A Ranking Method Based on Common Weights and Benchmark Point

نویسندگان

  • Ali Payan
  • Abbas Ali Noora
  • Farhad Hosseinzadeh Lotfi
چکیده

The highest efficiency score 1 (100% efficiency) is regarded as a common benchmark for Decision Making Units (DMUs). This brings about the existence of more than one DMU with the highest score. Such a case normally occurs in all Data Envelopment Analysis (DEA) models and also in all the Common Set of Weights (CSWs) methods and it may lead to the lack of thorough ranking of DMUs. And ideal DMU based on its specific structure is a unit that no unit would do better than. Therefore, it can be utilized as a benchmark for other units. We are going to take advantage of this feature to introduce a linear programming problem that will produce CSWs. The proposed method assures that the efficiency of all the units is less than that of the benchmark unit. As a result, it provides a comprehensive ranking of DMUs. Moreover, the proposed method is also noteworthy regarding computation. A numerical example is suggested to clarify and explain the proposed method and compare it to two other CSWs methods. Finally, 33 universities in Iran were ranked and compared using the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RANKING DMUS ON THE BENCHMARK LINE WITH EQUAL SHADOW PRICES

Data envelopment analysis (DEA) with considering the best condition for each decision making unit (DMU) assesses the relative efficiency for it and divides a homogenous group of DMUs in to two categories: efficient and inefficient, but traditional DEA models can not rank efficient DMUs. Although some models were introduced for ranking efficient DMUs, Franklin Lio & Hsuan peng (2008), proposed a...

متن کامل

Ranking of units by anti-ideal DMU with common weights

Data envelopment analysis (DEA) is a powerful technique for performance evaluation of decision making units (DMUs). One of the main objectives that is followed in performance evaluation is discriminating among efficient DMUs to provide a complete ranking of DMUs. DEA successfully divides them into two categories: efficient DMUs and inefficient DMUs. The DMUs in the efficient category have ident...

متن کامل

Ranking Two-Stage Process Using a Common Set of Weights in DEA

Supply chain management is the combination of art and science that goes into improving the supply chain. In some cases of supply chain especially two-stage process, differing weights for the same factors, may not acceptable. The purpose of this paper is a performance evaluation of two-stage using DEA and based on a CSW model and this method for ranking two-stage and could be used to measure the...

متن کامل

A comprehensive common weights data envelopment analysis model: Ideal and anti-ideal virtual decision making units approach

Data envelopment analysis (DEA) calculates the relative efficiency of homogenous decision-making units (DMUs) with multiple inputs and outputs. Classic DEA models usually suffer from several issues such as: discrimination power, variable weights of inputs/outputs, inaccurate efficiency estimation for small number of DMUs, incapability in working with zero and negative data, and not having exter...

متن کامل

Ranking Efficient DMUs in Two-stage Network DEA with Common Weights method

Two stages DEA models are used in many fields of management and industry. One of the concepts that has attracted the attention of researchers in the theory of production is the concept of ranking the units with a two-stage network. A unit ranking can provide useful information to decision makers (DMUs) about optimal decision making activities. This concept defines the superiority of a unit in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014